Model evaluation and model comparision

Joana Amaral Paulo

Information included in this presentation is available in Fenix!

According to Vanclay and Skovsgaard (1997), a summary on the key aspects on model evaluation include:

- 1. Examine the model and its components in terms of logic structure and from theoretical and biological views to see if they are:
- Parsimonious (more complex is not always better);

According to Vanclay and Skovsgaard (1997), a summary on the key aspects on model evaluation include:

- Examine the model and its components in terms of logic structure and from theoretical and biological views to see if they are:
- Parsimonious (more complex is not always better);
- biologically realistic (sigmoidal curve, allometric relationship...);
- consistent with existing theories of forest growth;
- predict sensible responses to management actions (ex: thinning => N and G), stand growth characteristics (site index...), etc...
- 2. Characterize errors in terms of:
- bias and precision;
- model efficiency;

model evaluation

Selection of data for model evaluation

- Independent data set was not used during model fitting and is used solely to assess how well the model generalizes to unseen data (model evaluation). Note: this data set must include dependent and independent variables available!
 - Not Used in fitting: It must be separate from the fitting data to prevent information leakage.
 - Representative of "real data": It should be similar in distribution to the actual data the model will encounter in deployment.
 - Sufficiently Large: It should have enough samples to provide a reliable estimate of model performance.

Selection of data for model evaluation

- Cross validation splitting or partition of data into subsets one for fitting and another for evaluation.
 - Trees? Plots?
 - How many? 10% of the data? X%? N plots?
 - The size of the dataset for cross-validation depends on several factors, including the total dataset size, model complexity, and computational resources.

CV Method	Description	When to Use			
Leave-One-Out Cross-Validation (LOOCV or press)	Each observation is left out once, and the model is trained on the rest.	When data is very small but computational cost is high.			
k-Fold Cross-Validation	Splits data into k equal parts, trains on k-1 folds, tests on the remaining fold. Repeats k times.	Standard choice when data is large enough.			

Measuring bias

- Compute the residual i (r_i) of each observation from the evaluation data set (r_i = yobs_i - yest_i = yobs_i - ŷ_i)
- Bias: refers to a systematic error in a model estimate, that causes it to deviate from the true value or underlying pattern.
 - > It may be positive or negative.
 - > As close to zero the better.
 - > Evaluated by r_i values distribution (percentiles, mean...)

Mean value of the residuals (M_r) to evaluate bias:

$$M_r = \frac{\sum_{i=1}^n r_i}{n}.$$

Measuring bias

6

Measuring bias

Measuring precision

- Precision: refers to how accurately a model predicts the dependent (y) variable.
 - > As close to zero the better.
 - Evaluated by the absolute value of the residuals |r_i| distribution (percentiles, mean...)

Mean of the absolute value of the residuals $(M_{|r|})$ to evaluate precision:

$$M_{|r|} = \frac{\sum_{i=1}^{n} \left| r_i \right|}{n},$$

Measuring precision

Model efficiency

Model efficiency (ef) - the proportion of variation explained by the model.

Model efficiency or the proportion of variation explained by the model (ef):

ef = 1 -
$$\frac{\sum_{i=1}^{n} r_i^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$
.

where r_i is the residual for observation i, y_i is observation or observed data i, \bar{y} is the mean value of all observed values from the evaluation data set and n is the number of observations from the evaluation data set.

Comparing models

Table 8

Validation statistics. M_r , mean value of the residuals (kg); $M_{|r|}$, mean of absolute value of the residuals (kg); P₅, percentile 5 of residuals (kg); P₉₅, percentile 95 of residuals (kg); ef, model efficiency.

Model	M_r	$M_{ r }$	P_5	P ₉₅	ef
Ι	-1.17	7.81	-14.20	24.59	0.825
II	0.71	7.24	-13.67	21.13	0.843
III	-0.21	5.19	-13.07	12.43	0.931
IV	0.21	4.38	-9.18	9.84	0.957

Paulo and Tomé (2010) http://dx.doi.org/10.1016/j.foreco.2010.02.010

Quadro 7 - Estatísticas do ajustamento e da capacidade preditiva dos modelos candidatos para avaliação do peso seco de cortiça virgem

Designação	R2	Mpress	Mapress	P ₉₉	P ₉₅	P ₅	P ₁	R ² press
Mod1	0,620	0,000	0,99	3,66	2,21	-1,85	-3,45	0,611
Mod3	0,645	0,000	0,97	3,67	2,27	-2,00	-3,00	0,633
Mod5	0,627	0,120	0,97	3,73	2,29	-1,76	-3,00	0,613

Paulo and Tomé (2014). http://www.scielo.gpeari.mctes.pt/pdf/slu/v22n1/v22n1a02.pdf

Reading for this topic

Vanclay, J. K., Skovsgaard, J. P. 1997. Evaluating forest growth models. Ecological Modelling 98 (1997) 1-12. Available:

https://fenix.isa.ulisboa.pt/downloadFile/5630229679016 30/vanclay%201995%20Modelacao.pdf

Burkhart, H. E., Tomé, M. 2012. Modeling Forest Trees and Stands. Springer. Chapter 18.2