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Information included in this presentation is
available in Fenix!



According to Vanclay and Skovsgaard (1997), a summary on
key aspects on model evaluation include:

1. Examine the model and its components in terms of logic
structure and from theoretical and biological views to see if
they are:

» Parsimonious (more complex is not always better);
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According to Vanclay and Skovsgaard (1997), a summary on t
key aspects on model evaluation include:

1. Examine the model and its components in terms of logic
structure and from theoretical and biological views to see if
they are:

Parsimonious (more complex is not always better); \ |
biologically realistic (sigmoidal curve, allometric relationship...);

\ .

. . .y . f
consistent with existing theories of forest growth; \5%

vV v v V

predict sensible responses to management actions (ex: thinning A
=> N and G), stand growth characteristics (site index...), etc...

2. Characterize errors in terms of:

model
evaluation

» bias and precision;

model efficiency;



Selection of data for model evaluation

» Independent data set - was not used during model fitting and ;s
used solely to assess how well the model generalizes to unseen
data (model evaluation). Note: this data set must includ
dependent and independent variables available! ?

o Not Used in fitting: It must be separate from the fitting data to "

\ .

4
prevent information leakage. \;.‘%

o Representative of “real data”: It should be similar in distribution to A
the actual data the model will encounter in deployment.

o Sufficiently Large: It should have enough samples to provide
reliable estimate of model performance.




Selection of data for model evaluation

» Cross validation - splitting or partition of data into subsets - one

for fitting and another for evaluation.

o Trees? Plots?

o How many? 10% of the data? X%? N plots?

o The size of the dataset for cross-validation depends on several “\ I
factors, including the total dataset size, model complexity, and <2

computational resources.

CV Method

Leave-One-Out Cross-Validation
(LOOCV or press)

k-Fold Cross-Validation

Description

Each observation is left out once,
and the model is trained on the
rest.

Splits data into k equal parts,
trains on k-1 folds, tests on the
remaining fold. Repeats k times.

When to Use

When data is very small but
computational cost is high.

Standard choice when data is
large enough.



Measuring bias

» Compute the residual i (r;) of each observation from the evaluation
data set (r; = yobs, - yest. = yobs; - ¥)

» Bias: refers to a systematic error in a model estimate, that causes.i
to deviate from the true value or underlying pattern.

» |t may be positive or negative.

> As close to zero the better.

» Evaluated by r; values distribution (percentiles, mean...)

Mean value of the residuals (M;) to evaluate bias:
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Measuring bias
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Measuring bias
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Measuring precision

» Precision: refers to how accurately a model predicts the depende
(y) variable.

> As close to zero the better.

» Evaluated by the absolute value of the residuals |r;| distributior\

(percentiles, mean...) :

Mean of the absolute value of the residuals (M) to evaluate
precision:

n
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Measuring precision
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Model efficiency

» Model efficiency (ef) - the proportion of variation explained by the
model.

Model efficiency or the proportion of variation explained by the
model (ef):

n 2 \ 3 ‘

T ,
ef=1- HZ:IZII_z. \&
Zi:1(yi - y) ‘

where r; is the residual for observation i, y; is observation or observed data i, ¥ is

the mean value of all observed values from the evaluation data set and n is the
number of observations from the evaluation data set.




Comparing models

Table 8

Validation statistics. M;, mean value of the residuals (kg); M, mean of absolute
value of the residuals (kg); Ps, percentile 5 of residuals (kg); Pgs, percentile 95 of
residuals (kg); ef, model efficiency.

Model M,— M|,-| P5 Pg5 ef

| -1.17 7.81 —-14.20 24,59 0.825
I 0.71 7.24 -13.67 21.13 0.843
11 -0.21 5.19 -13.07 12.43 0.931
IV 0.21 4.38 -9.18 9.84 0.957

Paulo and Tomé (2010) hitp://dx.dol.org/10.1016/].foreco.2010.02.010

Quadro 7 - Estatisticas do ajustamento e da capacidade preditiva dos modelos
candidatos para avaliacio do peso seco de cortica virgem

Designagin R? Mpreu M.npms P'H- P95 P5 P-I REPI'ESS
Mod1 0,620 | 0,000 0,99 366 | 221 | -1,85 ] -3,45| 0,611
Mod3 | 0645 | 0000 | 097 | 3,67 | 227 |-200]-300| 0633
Mod5 0,627 0,120 0,97 3,731 229 | -1,76 | -3,00 ] 0,613

Paulo and Tomé (2014). hitp://www.scielo.gpeari.mctes.pt/pdf/slu/v22n1/v22n1a02.pdf



http://dx.doi.org/10.1016/j.foreco.2010.02.010
http://www.scielo.gpeari.mctes.pt/pdf/slu/v22n1/v22n1a02.pdf

Reading for this topic

» Vanclay, J. K., Skovsgaard, J. P. 1997. Evaluating forest s
growth models Ecological Modelling 98 (1997) 1-12.
Available:
https://fenix.isa.ulisboa. pt/downloadFlle/5630229679016 =
30/vanclay%201995%20Modelacao.pdf A

» Burkhart, H. E., Tomé, M. 2012. Modeling Forest Trees and
Stands. Sprmger Chapter 18.2 AN



https://fenix.isa.ulisboa.pt/downloadFile/563022967901630/vanclay%201995%20Modelacao.pdf

